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ABSTRACT 

Nullnorms on bounded lattices are generalizations of t-norms 

and t-conorms with a zero element laying anywhere in the 

underlying lattices. In this paper, new methods for constructing 

nullnorms on bounded lattices are proposed. The proposed 

construction methods are based on the lattice-based sum of 

lattices that has been recently introduced by El-Zekey et al. (see 

[9]), for building new (bounded) lattices from fixed ones 

indexed by a (finite) lattice-ordered index set. Subsequently, 

the new construction methods are applied for building several 

new families of nullnorms on bounded lattices. As a by-

product, lattice-based sum constructions of t-norms and t-

conorms on bounded lattices have been obtained. Furthermore, 

new idempotent nullnorms on bounded lattices have been also 

obtained. 
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1. INTRODUCTION 
Nullnorm operators on the unit interval are special aggregation 

operators that have proven to be useful in many fields like 

expert systems, neural networks, fuzzy quantifiers, and fuzzy 

logics, see e.g. [13] and the references therein. They  were 

originally introduced in [2, 17] as generalizations of triangular 

norms (t-norm for short) and triangular conorms  

(t-conorm for short) with the zero element 𝑎 laying anywhere 

in the unit interval and have to satisfy some additional 

conditions. Nullnorms on the unit interval have been also 

studied in the papers [8, 18, 19] and many others.  

In [15] nullnorms have been studied on bounded lattices where 

the existence of nullnorms with the zero element 𝑎 laying 

anywhere in arbitrary bounded lattice 𝐿 has been proven with 

underling t-norms and t-conorms on 𝐿. As a by-product, the 

existence of the smallest nullnorm and of the greatest nullnorm 

has been shown. Moreover, in [14], the existence of idempotent 

nullnorms on a distributive bounded lattice 𝐿 has been also 

shown for any zero element 𝑎 ∈ 𝐿\{⊥, ⊤}. Recently an 

increasing interest of nullnorms on bounded lattices can be 

observed, see e.g. [4-6, 12] and many others. 

In this paper, new methods for constructing nullnorms on 

bounded lattices are proposed. The proposed construction 

methods are based on the lattice-based sum of lattices that has 

been recently introduced by El-Zekey et al. (see [9]), for 

building new (bounded) lattices from fixed ones indexed by  

a (finite) lattice-ordered index set. Subsequently, the new 

construction methods are applied for building several new 

families of nullnorms on bounded lattices. As a by-product, 

lattice-based sum constructions of t-norms and t-conorms on 

bounded lattices have been obtained. Furthermore, new 

idempotent nullnorms on bounded lattices, different from the 

ones given in [6], have been also obtained. We point out that, 

unlike [6], in our construction method of the idempotent 

nullnorms, the underlying lattices need not to be distributive. 

This paper is organized as follow. In Section 1, some basic 

notions are recalled. In Section 2, the basic results concerning 

the lattice-based sum of bounded lattices have been shortly 

recalled. In Section 3, lattice-based sum construction methods 

of nullnorms on bounded lattices have been developed. In 

Section 4, others lattice-based sum constructions of nullnorms 

leading to new idempotent nullnorms on bounded lattices have 

been also investigated.  In Section 5, the results, from Section 

3 and 4, are applied for constructing several new nullnorms on 

bounded lattices. Finally, some concluding remarks are added. 

Definition 1. ([1, 7]) A bounded lattice (𝐿, ≤, ⊥, ⊤) is a lattice 

which has the top and bottom elements, which are written as ⊤ 

and ⊥, respectively, i.e. there exist two elements ⊤, ⊥∈ 𝐿 such 

that ⊥≤ 𝑥 ≤ ⊤, for all 𝑥 ∈ 𝐿. 

 

Definition 2. ([3, 16]) An operation 𝑇: 𝐿2 → 𝐿 (𝑆: 𝐿2 → 𝐿) is 
called a t-norm (t-conorm) if it is commutative, associative, 

increasing with respect to both variables and has a neutral 

element 𝑒 = ⊤ (𝑒 =⊥). 
 

Note that, the t-norm and the t-conorm are dual of each other. 

Therefore, by duality, the general properties of t-norms can be 

translated to their dual t-conorms. 

 

Example 1. For any bounded lattice (𝐿, ≤, ⊥, ⊤), there exist at 

least two t-norms and two t-conorms, as follows 

i. The minimum t-norm           𝑇𝑀
𝐿 : 𝐿2 → 𝐿,   𝑇𝑀

𝐿 (𝑥, 𝑦) =
𝑥 ∧ 𝑦. 

ii. The drastic product t-norm 𝑇𝐷
𝐿: 𝐿2 → 𝐿, 

𝑇𝐷
𝐿(𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓 ⊤ ∈ {𝑥, 𝑦},
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

iii. The maximum t-conorm 𝑆𝑀
𝐿 : 𝐿2 → 𝐿, 

𝑆𝑀
𝐿 (𝑥, 𝑦) = 𝑥 ∨ 𝑦. 

iv. The drastic sum t-conorm 𝑆𝐷
𝐿 : 𝐿2 → 𝐿, 

𝑆𝐷
𝐿(𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 ⊥∈ {𝑥, 𝑦},
⊤ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Definition 3. ([15]) Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice. A 

commutative, associative, non-decreasing in each variable 

function 𝑉: 𝐿2 → 𝐿 is called a nullnorm if there is an element 

𝑎 ∈ 𝐿 such that 𝑉(𝑥, ⊥) = 𝑥 for all 𝑥 ≤ 𝑎, 𝑉(𝑥, ⊤) = 𝑥 for 

all 𝑥 ≥ 𝑎. 

It can be easily verified that 𝑉(𝑥, 𝑎) = 𝑎 for all 𝑥 ∈ 𝐿, i.e.  
𝑎 ∈ 𝐿 is the zero element of 𝑉. 
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Definition 4. ([1, 7]) Let (𝐿, ≤, ⊥, ⊤) be a bounded lattice 

and 𝑎 ∈ 𝐿. The downset of 𝑎 denoted ↓ 𝑎 and the upset of 𝑎 

denoted ↑ 𝑎 are given by 

 

↓ 𝑎 = {𝑥 ∈ 𝐿|𝑥 ≤ 𝑎} 
↑ 𝑎 = {𝑥 ∈ 𝐿|𝑥 ≥ 𝑎} 

 

2. LATTICE-BASED SUM OF BOUNDED 

LATTICES 
In this section we briefly recall the lattice-based sum 

construction of lattice ordered sets introduced in [9] for 

building new lattice-ordered structures from the fixed ones 

indexed by a lattice-ordered index set.  

In the sequel, (Λ, ⊑) denotes a finite lattice-ordered index set. 

The top and bottom elements of  (Λ, ⊑) will be denoted by ⊤Λ 

and ⊥Λ, respectively. Further, each summand (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼) 
is a bounded lattice has a top element ⊤𝛼 and a bottom 

element ⊥𝛼 for each 𝛼 ∈ Λ. We will use the lowercase Latin 

letters such as “𝑥”, “𝑦” and “𝑧” to ranging over the elements 

of 𝐿𝛼, and the lowercase Greek letters such as “𝛼”, “𝛽” and “𝛿” 

to ranging over the elements of Λ. If there exist 𝛽, 𝛿 ∈ Λ such 

that 𝛽 is incomparable with  𝛿, then we will write 𝛽 ∥ 𝛿. If 

𝛽, 𝛿 ∈ Λ such that 𝛽 ⊑ 𝛿 but 𝛽 ≠ 𝛿, then we will write 𝛽 ⊏ 𝛿. 

The number of elements (the cardinality) of a set 𝐿 will be 

denoted by |𝐿|.  

Definition 5.  ([9]) Consider a finite lattice-ordered index 

set (Λ, ⊑). The 𝛬-sum family is a family of bounded lattices 

{(𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼)}𝛼∈Λ that satisfy for all 𝛼, 𝛽 ∈ Λ with 𝛼 ≠ 𝛽 

the sets 𝐿𝛼 and 𝐿𝛽 are either disjoint or satisfy one of the 

following two conditions: 

 

i. 𝐿𝛼 ∩ 𝐿𝛽 = {𝑥𝛼𝛽} with 𝛼 ⊏ 𝛽, where 𝑥𝛼𝛽 is both the top 

element of 𝐿𝛼  and the bottom element of 𝐿𝛽, and where 

for each 𝜀 ∈ Λ with 𝛼 ⊏ 𝜀 ⊏ 𝛽 we have 𝐿𝜀 = {𝑥𝛼𝛽}, also 

for all 𝛿, 𝛾 ∈ Λ with 𝛿 ∥ 𝛾 , 𝛿 ⊏ 𝛽 and 𝛼 ⊏ 𝛾 we have 

𝐿𝛿 = {𝑦𝛿𝛾} or 𝐿𝛾 = {𝑧𝛿𝛾} where 𝑦𝛿𝛾 is the top element 

of 𝐿inf {𝛿,𝛾} and 𝑧𝛿𝛾 is the bottom element of 𝐿sup {𝛿,𝛾}. 

ii. 1 ≤ |𝐿𝛼⋂𝐿𝛽| ≤ 2 with 𝛼 ∥ 𝛽, and for each  

𝑥𝛼𝛽 = 𝐿𝛼 ∩ 𝐿𝛽 , 𝑥𝛼𝛽 is the top element of both 𝐿𝛼 and 𝐿𝛽 

and the bottom element of 𝐿sup {𝛼,𝛽}, or 𝑥𝛼𝛽 is the bottom 

element of both 𝐿𝛼 and 𝐿𝛽 and the top element of 

𝐿inf {𝛼,𝛽}. 

 

Definition 6. ([9]) Let (Λ, ⊑) be a finite lattice-ordered index 

set and {(𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼)}𝛼∈Λ be a Λ-sum family of bounded 

lattices. The lattice-based sum ⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼) is the 

set 𝐿 = ⋃ 𝐿𝛼𝛼∈Λ  equipped with the order relation ≤ given by: 

 

𝑥 ≤ 𝑦    if and only if 

  

{

∃𝛼 ∈ Λ such that 𝑥, 𝑦 ∈ 𝐿𝛼  𝑎𝑛𝑑 𝑥 ≤𝛼 𝑦
𝑜𝑟
∃𝛼, 𝛽 ∈ Λ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽  𝑎𝑛𝑑 𝛼 ⊏ 𝛽

           (1) 

 

Theorem 1. ([9]) Let (Λ, ⊑) be a finite lattice-ordered index set 

and let {(𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼)}𝛼∈Λ be a Λ-sum family of bounded 

lattices. Put 𝐿 = ⋃ 𝐿𝛼𝛼∈Λ , then (𝐿, ≤, ⊥, ⊤) =
⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼) is a bounded lattice. 

 

Note that, the partial order relation ≤ on the lattice 𝐿 in 

Theorem 1 obtained by setting 𝑥 ≤ 𝑦 in 𝐿 if and only if  
𝑥 ∧ 𝑦 = 𝑥 coincides with the partial order relation given in (1). 

One obtains the same partial order relation from the given 

lattice by setting 𝑥 ≤ 𝑦 in 𝐿 if and only if 𝑥 ∨ 𝑦 = 𝑦. 
 

Remark 1. We point out that, the lattice-ordered index set in 

[9] need not to be finite. But, for our purposes in this work, and 

from a practical point of view, from the very start, we assume 

that the index set is finite.  

Note that, the strategy just described is focuses on the union of 

the carriers and an order consistent with both the order of the 

underlying bounded lattices and the order of the lattice-ordered 

index set (see Definition 6). Consequently, the order relation 

for elements from different summands is inherited from the 

lattice-ordered index set. 

 

Example 2. Consider the lattice-ordered index set (Λ, ⊑) in 

Fig. 1. Then, the family associated with the structure in Fig. 2 

is not a Λ-sum family because 𝐿𝛼 ∩ 𝐿𝛽 = {𝑥𝛼𝛽} with  

𝑥𝛼𝛽 = ⊤𝛼 =⊥𝛽 , 𝛿 ⊏ 𝛽, 𝛼 ⊏ 𝛾 but neither 𝐿𝛿 = {⊤inf{𝛿,𝛾}} 

nor 𝐿𝛾 = {⊥sup{𝛿,𝛾}} violating the condition (i) in Definition 5. 

Note that, although the structure in Fig. 2 is  

a bounded lattice, its order relation isn’t consistent with the 

order of the index set, since for 𝑥 ∈ 𝐿𝛿  and 𝑦 ∈ 𝐿𝛾 we have 𝑥 ≤

𝑦 but the only elements 𝛿 and 𝛾 in the index set associated with 

𝑥 and 𝑦, respectively, are incomparable elements in Λ. One of 

modifications of the family associated with the structure in Fig. 

2 by putting 𝐿𝛿 = {⊤inf{𝛿,𝛾}} which produces the Λ-sum family 

of bounded lattices in Fig. 3. In this case, as 𝑥 and 𝑦 just 

described, we have 𝑥 ≤ 𝑦, 𝑥 ∈ 𝐿𝛿 ∩ 𝐿⊥Λ and 𝑦 ∈ 𝐿𝛾, and hence 

we have ⊥Λ, 𝛾 ∈ Λ associated with 𝑥 and 𝑦, respectively, such 

that ⊥Λ⊏ 𝛾.  

 

Fig 1. The lattice (𝚲, ⊑) of example 2 

Note that, consequently from Definition 6 and Theorem 1, if 

the lattice-ordered index set is linear, then the lattice-based sum 

is reduced to the ordinal sum. For more details see [9].   

We end this section by the following lemma, from [10], which 

is a direct consequence from Definition 6 and Theorem 1. 

Lemma 1. ([10]) Let (Λ, ⊑) be a finite lattice-ordered index set 

and let 𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼) be a lattice-based sum of 

bounded lattices. Assume that there exist 𝑥1, 𝑥2 ∈ 𝐿 such that 

there is no 𝛼 ∈ Λ such that {𝑥1, 𝑥2} ⊆ 𝐿𝛼 

i. If 𝑥1 < 𝑥2, then there exist  𝛼1, 𝛼2 ∈ Λ such that 

(𝑥1, 𝑥2) ∈ 𝐿𝛼1 × 𝐿𝛼2 with 𝛼1 ⊏ 𝛼2 and for all  

𝑧1 ∈ 𝐿𝛼1 and for all 𝑧2 ∈ 𝐿𝛼2  we have 𝑧1 ≤ 𝑧2. 

ii. If 𝑥1 ∥ 𝑥2, then for all 𝛼1 ∈ 𝐼𝑥1 and 𝛼2 ∈ 𝐼𝑥2 we have  

𝛼1 ∥ 𝛼2 and for all 𝑧1 ∈ 𝐿𝛼1\{⊥𝛼1 , ⊤𝛼1} and for 

all 𝑧2 ∈ 𝐿𝛼2\{⊥𝛼2 , ⊤𝛼2}  we have 𝑧1 ∥ 𝑧2. 

Example 3. Consider the Λ-sum family of bounded lattices in 

Fig. 3. It is clear that, for all 𝑥 ∈ 𝐿𝛼 and 𝑦 ∈ 𝐿𝛽 we have 𝑥 ≤ 𝑦 

(since 𝛼 ⊏ 𝛽). Further, for all 𝑎 ∈ 𝐿𝛽\{⊥𝛽 , ⊤𝛽} and  

𝑏 ∈ 𝐿𝛾\{⊥𝛾, ⊤𝛾} we have 𝑎 ∥ 𝑏 (since 𝛽 ∥ 𝛾). 
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Fig 2. Not family 

 

Fig 3. The 𝚲-sum family of example 2 

3. LATTICE-BASED SUM CONSTRUCTION 

OF NULLNORMS ON BOUNDED LATTICES 
In this section, based on the lattice-based sum of bounded 

lattices (see Section 2), we introduce a new method for 

constructing nullnorms on bounded lattices. 

Remark 2. Under the assumption that each summand of the  

Λ-sum family is a bounded lattice, then for some lattice-ordered  

index set (Λ, ⊑)  and for any 𝛼 ∈ Λ we have that for any t-norm 

𝑇𝛼 on 𝐿𝛼 and for any t-conorm 𝑆𝛼 on 𝐿𝛼, 

𝑇𝛼(𝑥, 𝑦) = 𝑥 ∧ 𝑦, 𝑆𝛼(𝑥, 𝑦) = 𝑥 ∨ 𝑦. 

when 𝑥 or 𝑦 are equal to one of the boundaries of 𝐿𝛼. 

Theorem 2. Consider a finite lattice-ordered index set (Λ, ⊑) 
and let 𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼) be a lattice-based sum of 

bounded lattices. Let 𝑎 ∈ 𝐿 with 𝑎 ∈ {⊥𝛼 , ⊤𝛼} for some 𝛼 ∈ Λ 

and (𝑇𝛼)𝛼∈Λ ((𝑆𝛼)𝛼∈Λ) be a family of t-norms  

(t-conorms) on the corresponding summands (𝐿𝛼)𝛼∈Λ. Then 

the functions 𝑉∨: 𝐿
2 → 𝐿 and 𝑉∧: 𝐿

2 → 𝐿 defined as follow 

𝑉∨(𝑥, 𝑦) =

{
 
 

 
 𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∧ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(2) 

𝑉∧(𝑥, 𝑦) =

{
 
 

 
 𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∨ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(3) 

are nullnorms on 𝐿 with zero element 𝑎. 

Proof: The proof runs only for the operation 𝑉∨. The operation 

𝑉∧ has a similar proof. 

First, we note that, for all 𝑥, 𝑦 ∈ 𝐿 with 𝑥, 𝑦 ∈↓ 𝑎 and there is 

no 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼 then we have  
𝑉∨(𝑥, 𝑦) = (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) = 𝑥 ∨ 𝑦. Also for all 𝑥 ∈↑ 𝑎 and 

for 𝑦 ∥ 𝑎 or 𝑦 ∈↓ 𝑎, we have 𝑉∨(𝑥, 𝑦) = (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) =
𝑎 ∨ (𝑦 ∧ 𝑎) = 𝑎, by absorption. We will always use this 

without mention.  

It is necessary to check that the operation 𝑉∨ is well-defined. A 

problem can only arise if (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛽 with  

𝑥 ∈ 𝐿𝛼 ∩ 𝐿𝛽 for some 𝛼, 𝛽 ∈ Λ and say,  

i. 𝑥, 𝑦 ∈↓ 𝑎,  
a) 𝛼 ⊏ 𝛽, 

𝑉∨(𝑥, 𝑦) = 𝑆𝛽(𝑥, 𝑦) = 𝑥 ∨𝛽 𝑦 = 𝑦 

if we consider that 𝑥, 𝑦 ∈ 𝐿𝛽, and 

𝑉∨(𝑥, 𝑦) = 𝑥 ∨ 𝑦 = 𝑦 

if we consider that 𝑥 ∈ 𝐿𝛼 and 𝑦 ∈ 𝐿𝛽. Thus 

producing the same result in both cases 

 

b) 𝛼 ∥ 𝛽, then either 𝑥 = ⊤𝛼 = ⊤𝛽 and hence,  

𝑉∨(𝑥, 𝑦) = 𝑆𝛽(𝑥, 𝑦) = 𝑥 ∨𝛽 𝑦 = 𝑥 ∨ 𝑦 = 𝑥 

or 𝑥 =⊥𝛼=⊥𝛽 and hence,  

𝑉∨(𝑥, 𝑦) = 𝑆𝛽(𝑥, 𝑦) = 𝑥 ∨𝛽 𝑦 = 𝑥 ∨ 𝑦 = 𝑦 

 

ii. 𝑥, 𝑦 ∈↑ 𝑎. This case is dual to case (i) has a dual proof 

due to the duality between the t-norm and the  

t-conorm. 

Now, we need to prove that 𝑉∨ is a nullnorm on 𝐿 with zero 

element 𝑎. 

It is easy to see the commutativity of 𝑉∨ due to the 

commutativity of the t-norm and the t-conorm defined on each 

summand and ∧ and ∨ on 𝐿. 

Zero element: We prove that 𝑎 is the zero element of 𝑉∨. The 

proof is split into all the possible cases for some 𝑥 ∈ 𝐿, as 

follows. 

i. 𝑥 ∈↓ 𝑎, 
a) There exist some 𝛼 ∈ Λ such that  

{𝑥, 𝑎} ⊆ 𝐿𝛼, then (from Remark 2) we 

have, 

𝑉∨(𝑥, 𝑎) = 𝑆𝛼(𝑥, 𝑎) = 𝑥 ∨𝛼 𝑎 = 𝑎 

b) There is no 𝛼 ∈ Λ such that {𝑥, 𝑎} ⊆ 𝐿𝛼, 

then,  

𝑉∨(𝑥, 𝑎) = 𝑥 ∨ 𝑎 = 𝑎 

ii. 𝑥 ∈↑ 𝑎. This case has a dual proof of case (i) due to 

the duality between the t-norm and the t-conorm. 

iii. 𝑥 ∥ 𝑎. Then directly from the definition of 𝑉∨ we 

have 

𝑉∨(𝑥, 𝑎) = 𝑎 
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Monotonicity: We prove that if 𝑥 ≤ 𝑦 in 𝐿, then for all 𝑧 ∈ 𝐿, 
𝑉∨(𝑥, 𝑧) ≤ 𝑉∨(𝑦, 𝑧). The proof is split into all the possible 

cases, as follows, 

Case (1): Let 𝑥, 𝑦 ∈↓ 𝑎. Then we have the following subcases 

Subcase 1(a): 𝑧 ∈↓ 𝑎, 

i. There exist some 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼. If  
𝑧 ∈ 𝐿𝛼 , then monotonicity holds trivially due to the 

monotonicity of 𝑆𝛼 on 𝐿𝛼. If 𝑧 ∉ 𝐿𝛼, then  

𝑉∨(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 
ii. There is no 𝛼 ∈ Λ such that {𝑥, 𝑦} ⊆ 𝐿𝛼.  

a) If 𝑥 and 𝑧 are in the same summand, we 

observe it by consider {𝑥, 𝑧} ⊆ 𝐿𝛽 and  

𝑦 ∈ 𝐿𝛿  with 𝛽 ≠ 𝛿 for some 𝛽, 𝛿 ∈ Λ, 

then from Lemma 1, we have either  
𝛽 ⊏ 𝛿 or 𝛽 ∥ 𝛿. If 𝛽 ⊏ 𝛿, then  

𝑉∨(𝑥, 𝑧) = 𝑆𝛽(𝑥, 𝑧) ≤ 𝑦 

= 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 
If 𝛽 ∥ 𝛿, then we have either 𝑥 ∈ {⊥𝛽 , ⊤𝛽} 

and hence, 

𝑉∨(𝑥, 𝑧) = 𝑆𝛽(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 

= 𝑉∨(𝑦, 𝑧) 

or 𝑥 ∈ 𝐿𝛽\{⊥𝛽 , ⊤𝛽}, then necessarily  

𝑦 = ⊤𝛿  and hence, 

𝑉∨(𝑥, 𝑧) = 𝑆𝛽(𝑥, 𝑧) ≤ 𝑦 

= 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 
b) If 𝑦 and 𝑧 are in the same summand, we 

observe it by consider {𝑦, 𝑧} ⊆ 𝐿𝛼 and  
𝑥 ∉ 𝐿𝛼  for some 𝛼 ∈ Λ, then 

𝑉∨(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 ≤ 𝑆𝛼(𝑦, 𝑧) 
= 𝑉∨(𝑦, 𝑧) 

c) All arguments are in different summands,  

𝑉∨(𝑥, 𝑧) = 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

Subcase 1(b): 𝑧 ∈↑ 𝑎, 

𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

Subcase 1(c): 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
≤ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
= 𝑉∨(𝑦, 𝑧) 

Case (2): Let 𝑥 ∈↑ 𝑎, then 𝑦 ∈↑ 𝑎. 

i. 𝑧 ∈↓ 𝑎, 
𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎. In this case, the proof is a dual proof of case 

(1) due to the duality between the t-norm and the  

t-conorm. 

iii. 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

Case (3): Let 𝑥 ∈↓ 𝑎, 𝑦 ∈↑ 𝑎. 

i. 𝑧 ∈↓ 𝑎. In this case we have either 𝑥 and 𝑧 are in the 

same summand or 𝑥 and 𝑧 are in different 

summands. In both cases and due to the t-conorm 

and ∨ on 𝐿 we have, 

𝑉∨(𝑥, 𝑧) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 
ii. 𝑧 ∈↑ 𝑎. Similarly, as in case (i) we have  

𝑉∨(𝑦, 𝑧) ≥ 𝑎 and hence, 

𝑉∨(𝑥, 𝑧) = 𝑎 ≤ 𝑉∨(𝑦, 𝑧) 
iii. 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 

Case (4): Let 𝑥 ∈↓ 𝑎, 𝑦 ∥ 𝑎. 

i. 𝑧 ∈↓ 𝑎, 
a) There exist some 𝛼 ∈ Λ such that 

{𝑥, 𝑧} ⊆ 𝐿𝛼. Then we have either  
𝑦 ∧ 𝑎 ∈ 𝐿𝛼  or 𝑦 ∧ 𝑎 ∉ 𝐿𝛼. If 𝑦 ∧ 𝑎 ∈ 𝐿𝛼, 

then necessarily 𝑦 ∈ {⊥𝛼 , ⊤𝛼}. In case 

that 𝑦 ∧ 𝑎 = ⊤𝛼, then  

𝑉∨(𝑥, 𝑧) = 𝑆𝛼(𝑥, 𝑧) ≤ ⊤𝛼 
= 𝑦 ∧ 𝑎 = (𝑦 ∧ 𝑎) ∨ 𝑧 
= 𝑉∨(𝑦, 𝑧) 

In case that 𝑦 ∧ 𝑎 =⊥𝛼 , then necessarily 

𝑥 =⊥𝛼 and hence 

𝑉∨(𝑥, 𝑧) = 𝑆𝛼(𝑥, 𝑧) = 𝑥 ∨ 𝑧 
= 𝑧 = (𝑦 ∧ 𝑎) ∨ 𝑧 
= 𝑉∨(𝑦, 𝑧) 

If 𝑦 ∧ 𝑎 ∉ 𝐿𝛼, then 𝑦 ∧ 𝑎 > 𝑢 for all  
𝑢 ∈ 𝐿𝛼 and hence, 

𝑉∨(𝑥, 𝑧) = 𝑆𝛼(𝑥, 𝑧) ≤ 𝑦 ∧ 𝑎 
= (𝑦 ∧ 𝑎) ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 

b) There is no 𝛼 ∈ Λ such that {𝑥, 𝑧} ⊆ 𝐿𝛼 , 
then 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
≤ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
= 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎, 
𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑎. This case is similar to subcase 1(c) has  

a similar proof. 

Case (5): Let 𝑥 ∥ 𝑎, 𝑦 ∈↑ 𝑎. 

i. 𝑧 ∈↓ 𝑎, 
𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 

ii. 𝑧 ∈↑ 𝑎. In similar way of case 3(ii) we have 

𝑉∨(𝑦, 𝑧) ≥ 𝑎 and hence, 

𝑉∨(𝑥, 𝑧) = 𝑎 ≤ 𝑉∨(𝑦, 𝑧) 
iii. 𝑧 ∥ 𝑎, 

𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) ≤ 𝑎 = 𝑉∨(𝑦, 𝑧) 

Case (6): Let 𝑥 ∥ 𝑎, 𝑦 ∥ 𝑎. 

i. 𝑧 ∈↓ 𝑎. This case is similar to case 4(iii) has  

a similar proof. 

ii. 𝑧 ∈↑ 𝑎, 
𝑉∨(𝑥, 𝑧) = 𝑎 = 𝑉∨(𝑦, 𝑧) 

iii. 𝑧 ∥ 𝑎, 
𝑉∨(𝑥, 𝑧) = (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

≤ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) = 𝑉∨(𝑦, 𝑧) 

Associativity: We prove that 𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. Again, the proof is split into all possible cases 

by considering the relationship between the arguments 𝑥, 𝑦, 𝑧 

and 𝑎, as follows.  

Case (1): All arguments are from ↓ 𝑎. 

i. There exist some 𝛼 ∈ Λ such that {𝑥, 𝑦, 𝑧} ⊆ 𝐿𝛼. In 

this case associativity holds trivially due to the 

associativity of 𝑆𝛼 on 𝐿𝛼. 

ii. All arguments are from different summands, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (𝑥 ∨ 𝑦, 𝑧) 
= 𝑥 ∨ 𝑦 ∨ 𝑧 
= 𝑉∨ (𝑥, 𝑦 ∨ 𝑧) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 
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In this case, we must note that, if 𝑥 ∨ 𝑦 and 𝑧 are in 

the same summand, then necessarily 𝑥 ∨ 𝑦 is equal to 

one of the boundaries of this summand and hence 

(from Remark 2) we have 𝑉∨ (𝑥 ∨ 𝑦, 𝑧) = 𝑥 ∨ 𝑦 ∨ 𝑧. 

 

iii. Exactly two arguments are from the same summand. 

We observe it by considering the following cases. 

a) There exist some 𝛼 ∈ Λ such that  
{𝑥, 𝑦} ⊆ 𝐿𝛼 and 𝑧 ∉ 𝐿𝛼. If 𝑥 or 𝑦 is equal 

to one of the boundaries of 𝐿𝛼 then (from 

Remark 2) associativity holds trivially 

due to the associativity of ∨ on 𝐿. 

Therefore, we assume that 𝑥, 𝑦 ∈ 𝐿𝛼\
{⊥𝛼 , ⊤𝛼}, then we compare 𝑧 with 𝑥 and 

𝑦, as follows 

If 𝑥 > 𝑧 or 𝑦 > 𝑧, then 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑆𝛼(𝑥, 𝑦), 𝑧) 
= 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 
= 𝑆𝛼(𝑥, 𝑦) 
= 𝑆𝛼(𝑥, 𝑦 ∨ 𝑧) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧))  
If 𝑥 < 𝑧 or 𝑦 < 𝑧, then 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑆𝛼(𝑥, 𝑦), 𝑧) 
= 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 
= 𝑧 
= 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 
= 𝑥 ∨ 𝑉∨(𝑦, 𝑧) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧))  
If 𝑥 ∥ 𝑧 or 𝑦 ∥ 𝑧, then  

𝑥 ∨ 𝑧 = 𝑦 ∨ 𝑧 = 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 

and hence, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑆𝛼(𝑥, 𝑦), 𝑧) 
= 𝑆𝛼(𝑥, 𝑦) ∨ 𝑧 
= 𝑦 ∨ 𝑧 = 𝑉∨(𝑦, 𝑧) 
= 𝑥 ∨ 𝑉∨(𝑦, 𝑧) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧))  

b) There exist some 𝛽 ∈ Λ such that  
{𝑥, 𝑧} ⊆ 𝐿𝛽 and 𝑦 ∉ 𝐿𝛽 . This case is 

similar to case (a) has a similar proof. 

c) There exist some 𝛿 ∈ Λ such that  
{𝑦, 𝑧} ⊆ 𝐿𝛿  and 𝑥 ∉ 𝐿𝛿. This case is 

similar to case (a) has a similar proof. 

Case (2): All arguments are from ↑ 𝑎. This case has a dual 

proof of case (1) due to the duality between t-norm and  

t-conorm. 

Case (3): All arguments are incomparable with 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

= 𝑉∨(𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

Case (4): Exactly two arguments are from ↓ 𝑎.  

i. 𝑥, 𝑦 ∈↓ 𝑎, 𝑧 > 𝑎. In this case we have either 𝑥 and 𝑦 

are in the same summand or 𝑥 and 𝑦 are from 

different summands. In both cases, we have  

𝑉∨(𝑥, 𝑦) ≤ 𝑎 and hence, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑎 = 𝑉∨(𝑥, 𝑎) = 𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) 

ii. 𝑥, 𝑦 ∈↓ 𝑎, 𝑧 ∥ 𝑎. Then from the fact that 𝑧 ∧ 𝑎 < 𝑎, 

the associativity holds by a proof exactly similar to 

case (1) but with 𝑥, 𝑦 ∈↓ 𝑎 and 𝑧 ∧ 𝑎 < 𝑎. 

iii. 𝑥, 𝑧 ∈↓ 𝑎, 𝑦 > 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎    

iv. 𝑥, 𝑧 ∈↓ 𝑎, 𝑦 ∥ 𝑎. This case is similar to case 4(ii) has 

a similar proof. 

v. 𝑦, 𝑧 ∈↓ 𝑎, 𝑥 > 𝑎. This case is similar to case 4(i) has 

a similar proof. 

vi. 𝑦, 𝑧 ∈↓ 𝑎, 𝑥 ∥ 𝑎. This case is similar to case 4(ii) has 

a similar proof. 

Case (5): Exactly two arguments are from ↑ 𝑎. 

i. 𝑥, 𝑦 ∈↑ 𝑎, 𝑧 < 𝑎. In this case we have either 𝑥 and 𝑦 

are in the same summand or 𝑥 and 𝑦 are in different 

summands. In both cases, we have 𝑉∨(𝑥, 𝑦) ≥ 𝑎 and 

hence 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎    

ii. 𝑥, 𝑦 ∈↑ 𝑎, 𝑧 ∥ 𝑎. This case is similar to case 5(i) has 

a similar proof. 

iii. 𝑥, 𝑧 ∈↑ 𝑎, 𝑦 < 𝑎. 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎    

iv. 𝑥, 𝑧 ∈↑ 𝑎, 𝑦 ∥ 𝑎. This case is similar to case 5(iii) has 

a similar proof. 

v. 𝑦, 𝑧 ∈↑ 𝑎, 𝑥 < 𝑎. In this case we have either 𝑦 and 𝑧 

are in the same summand or 𝑦 and 𝑧 are in different 

summands. In both cases, we have 𝑉∨(𝑦, 𝑧) ≥ 𝑎 and 

hence 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑥, 𝑎) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑎    
vi. 𝑦, 𝑧 ∈↑ 𝑎, 𝑥 ∥ 𝑎. This case is similar to case 5(v) has 

a similar proof. 

Case (6): Exactly two arguments are incomparable with 𝑎. 

i. 𝑥 ∥ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ∈↓ 𝑎.  

In this case we have 𝑥 ∧ 𝑎 < 𝑎 and 𝑦 ∧ 𝑎 < 𝑎 with 

𝑥 ∧ 𝑎 and 𝑦 ∧ 𝑎 are on the boundaries and hence 

(from Remark 2) we have 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
ii. 𝑥 ∥ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ∈↑ 𝑎. 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) 

= 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎 

iii. 𝑥 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑦 ∈↓ 𝑎. This case is similar to case 6(i) 

has a similar proof. 

iv. 𝑥 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑦 ∈↑ 𝑎, 
𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎    
v. 𝑦 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑥 ∈↓ 𝑎. This case is similar to case 6(i) 

has a similar proof. 

vi. 𝑦 ∥ 𝑎, 𝑧 ∥ 𝑎, 𝑥 ∈↑ 𝑎. This case is similar to case 6(iv) 

has a similar proof. 

For other possibilities we distinguish the following cases 

i. 𝑥 ∈↓ 𝑎, 𝑦 ∈↑ 𝑎, 𝑧 ∥ 𝑎, 
𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎    

ii. 𝑥 ∈↓ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ∈↑ 𝑎, 

𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨ (((𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎)), 𝑧) = 𝑎 
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𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, 𝑎) = 𝑎 

iii. 𝑥 ∈↑ 𝑎, 𝑦 ∈↓ 𝑎, 𝑧 ∥ 𝑎, 
𝑉∨ (𝑉∨(𝑥, 𝑦), 𝑧) = 𝑉∨(𝑎, 𝑧) = 𝑎 

𝑉∨(𝑥, 𝑉∨(𝑦, 𝑧)) = 𝑉∨(𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= 𝑎 

iv. 𝑥 ∈↑ 𝑎, 𝑦 ∥ 𝑎, 𝑧 ↓ 𝑎. This case is similar to case (iii) 

has a similar proof. 

v. 𝑥 ∥ 𝑎, 𝑦 ↓ 𝑎, 𝑧 ∈↑ 𝑎. This case is similar to case (ii) 

has a similar proof. 

vi. 𝑥 ∥ 𝑎, 𝑦 ↑ 𝑎, 𝑧 ↓ 𝑎. This case is similar to case (i) has 

a similar proof. 

In case of 𝑎 = ⊤ we obtain t-conorms and in case of 𝑎 =⊥ we 

obtain t-norms. Consequently, we get, as a corollary, the 

following lattice-based sum constructions of t-norms and  

t-conorms obtained by El-Zekey (see  [10]) in a more general 

setting where the lattice-ordered index set need not to be finite 

and so-called t-subnorms (t-subconorms) can be used (with a 

little restriction) instead of t-norms (t-conorms) as summands 

in the lattice-based sum construction of t-norms (t-conorms). 

Corollary 1. With all the assumptions of Theorem 2 the 

nullnorm functions 𝑉∨ and 𝑉∧  as defined in equations (2) and 

(3), respectively, satisfy the following: 

i. If 𝑎 =⊥, then  

𝑉∨(𝑥, 𝑦) = 𝑉∧(𝑥, 𝑦) = {
𝑇𝛼(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,
𝑥 ∧ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

is a t-norm on 𝐿. 

 

ii. If 𝑎 = ⊤, then  

𝑉∨(𝑥, 𝑦) = 𝑉∧(𝑥, 𝑦) = {
𝑆𝛼(𝑥, 𝑦) 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿𝛼 × 𝐿𝛼 ,
𝑥 ∨ 𝑦 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

is a t-conorm on 𝐿. 

4. IDEMPOTENT NULLNORMS ON 

BOUNDED LATTICES 
In this section, others lattice-based sum construction methods 

of nullnorms leading to new idempotent nullnorms on 

bounded lattices are investigated. 

Theorem 3. Consider a finite lattice-ordered index set (Λ, ⊑) 
and let 𝐿 = ⋃ 𝐿𝛼𝛼∈Λ . Let 𝑎 ∈ 𝐿 with 𝑎 ∈ {⊥𝛼 , ⊤𝛼} for some 

𝛼 ∈ Λ and (𝑇𝛼)𝛼∈Λ ((𝑆𝛼)𝛼∈Λ) be a family of t-norms  

(t-conorms) on the corresponding summands (𝐿𝛼)𝛼∈Λ. Then 

the functions 𝑉∨
𝐼: 𝐿2 → 𝐿 and 𝑉∧

𝐼: 𝐿2 → 𝐿 defined as follow 

𝑉∨
𝐼(𝑥, 𝑦) = 

 

{
 
 

 
 𝑆𝛼

(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(4) 

and 

 
𝑉∧
𝐼(𝑥, 𝑦) = 

 

 

{
 
 

 
 𝑆𝛼

(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛼 ∩↓ 𝑎,

𝑇𝛽(𝑥, 𝑦) 𝑖𝑓 𝑥, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎,

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(5) 

are nullnorms on 𝐿 with zero element 𝑎. 

Proof: The proof runs only for the operation 𝑉∨
𝐼. The operation 

𝑉∧
𝐼 has a similar proof. 

The commutativity, the monotonicity and the fact that 𝑎 is the 

zero element of 𝑉∨
𝐼 have exactly the same proof as the 

corresponding one from Theorem 2. It is only remaining to see 

the associativity of 𝑉∨
𝐼.  

Associativity: We prove that  

𝑉∨
𝐼 (𝑉∨

𝐼(𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼(𝑥, 𝑉∨

𝐼(𝑦, 𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. 

Associativity of 𝑉∨
𝐼 is preserved in all cases by exactly the 

same proof of the corresponding cases from Theorem 2, but 

only one, namely if at least two equal arguments are 

incomparable with 𝑎. Therefore, we assume that 𝑥 = 𝑦 ∥ 𝑎 

and distinguish the following cases 

Case (1): 𝑧 ∥ 𝑎 with 𝑧 ≠ 𝑥 (equivalent to 𝑧 ≠ 𝑦)  

𝑉∨
𝐼 (𝑉∨

𝐼 (𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼 (𝑥 ∧ 𝑦, 𝑧) 

= 𝑉∨
𝐼 (𝑥, 𝑧) 

= (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

𝑉∨
𝐼 (𝑥, 𝑉∨

𝐼 (𝑦, 𝑧)) = 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
= (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

Case (2): 𝑧 ∈↓ 𝑎, 

𝑉∨
𝐼 (𝑉∨

𝐼 (𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼(𝑥 ∧ 𝑦, 𝑧) 

= 𝑉∨
𝐼 (𝑥, 𝑧) 

= (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

𝑉∨
𝐼 (𝑥, 𝑉∨

𝐼 (𝑦, 𝑧)) = 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= (𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 
= (𝑥 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎) 

Case (3): 𝑧 ∈↑ 𝑎, 

𝑉∨
𝐼 (𝑉∨

𝐼 (𝑥, 𝑦), 𝑧) = 𝑉∨
𝐼 (𝑥 ∧ 𝑦, 𝑧) 

= 𝑉∨
𝐼 (𝑥, 𝑧) = 𝑎 

𝑉∨
𝐼 (𝑥, 𝑉∨

𝐼 (𝑦, 𝑧)) = 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ (𝑧 ∧ 𝑎)) 

= 𝑉∨
𝐼 (𝑥, (𝑦 ∧ 𝑎) ∨ 𝑎) 

= 𝑉∨
𝐼 (𝑥, 𝑎) = 𝑎 

 

All other cases can be shown in similar way. 

Corollary 2. If we put 𝑇𝛼 = 𝑇𝑀
𝐿  and 𝑆𝛼 = 𝑆𝑀

𝐿  on 𝐿𝛼 for all  
𝛼 ∈ Λ in 𝑉∨

𝐼 and 𝑉∧
𝐼 in equations (4) and (5) in Theorem 3, then 

the following functions are idempotent nullnorms on 𝐿 with 

zero element 𝑎. 

𝑉∨
𝐼 (𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥, 𝑦 ∈↑ 𝑎) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),
(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and  

𝑉∧
𝐼 (𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥, 𝑦 ∈↓ 𝑎) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),
(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Remark 3. The zero element 𝑎 of the nullnorms 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and 

 𝑉∧
𝐼 was restricted to be one of the boundaries of some summand 

of  𝐿. If 𝑎 is inside some summand, then 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and  𝑉∧

𝐼 may 

not work to construct nullnorms on 𝐿, for example, if we 

consider a lattice index set (Λ, ⊑) and a lattice-based sum of 

bounded lattices  𝐿 and there exist some 𝛼 ∈ Λ such that 

{𝑥, 𝑦, 𝑎} ⊆ 𝐿𝛼 with ⊥𝛼< 𝑥 < 𝑎 < 𝑦 < ⊤𝛼 and 𝑇𝛼 = 𝑇𝐷
𝐿, 𝑆𝛼 =

𝑆𝐷
𝐿  then from Theorem 2 and Theorem 3 we have  
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𝑉∨(𝑥, 𝑎) = 𝑉∧(𝑥, 𝑎) = 𝑉∨
𝐼(𝑥, 𝑎) = 𝑉∧

𝐼(𝑥, 𝑎) = 𝑆𝛼(𝑥, 𝑎)

= 𝑆𝐷
𝐿(𝑥, 𝑎) = ⊤𝛼 ≠ 𝑎 

𝑉∨(𝑦, 𝑎) = 𝑉∧(𝑦, 𝑎) = 𝑉∨
𝐼(𝑦, 𝑎) = 𝑉∧

𝐼(𝑦, 𝑎) = 𝑇𝛼(𝑦, 𝑎)

= 𝑇𝐷
𝐿(𝑦, 𝑎) =⊥𝛼≠ 𝑎 

Violating the zero element property of the nullnorm operator. 

However, the functions 𝑉∨, 𝑉∧, 𝑉∨
𝐼 and  𝑉∧

𝐼 are still nullnorms on 

𝐿 in case that 𝑎 is inside some summand if and only if the  

t-norm and the t-conorm defined on this summand are fixed to 

be the minimum 𝑇𝑀
𝐿  and the maximum 𝑆𝑀

𝐿 , respectively.   

5. Applications 
In this section, the obtained results are applied for building 

several new nullnorm operations on bounded lattices. 

Corollary 3. Consider a finite lattice-ordered index set (Λ, ⊑) 
and a lattice-based sum of bounded lattices  
𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼). If we put 𝑆𝛼 = 𝑆𝐷

𝐿  and 𝑇𝛼 = 𝑇𝐷
𝐿 

for all 𝛼 ∈ Λ in 𝑉∨ and 𝑉∧ in Theorem 2, then we obtain the 

following nullnorms  

𝑉∨
𝐷(𝑥, 𝑦) =

{
 
 

 
 ⊤𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∧ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑉∧
𝐷(𝑥, 𝑦) =

{
 
 

 
 ⊤𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∨ 𝑦 𝑖𝑓 𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽,

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Corollary 4. Consider a finite lattice-ordered index set (Λ, ⊑) 
and a lattice-based sum of bounded lattices  
𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼). If we put 𝑆𝛼 = 𝑆𝐷

𝐿  and 𝑇𝛼 = 𝑇𝐷
𝐿 

for all 𝛼 ∈ Λ in 𝑉∨
𝐼 and 𝑉∧

𝐼 in Theorem 3, then we obtain the 

following nullnorms  

𝑉∨
𝑑(𝑥, 𝑦) = 

{
 
 

 
 
⊤𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∧ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↑ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↑ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑉∧
𝑑(𝑥, 𝑦) = 

{
 
 

 
 
⊤𝛼 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛼 ∩↓ 𝑎)\{⊥𝛼},

⊥𝛽 𝑖𝑓 𝑥, 𝑦 ∈ (𝐿𝛽 ∩↑ 𝑎)\{⊤𝛽},

𝑥 ∨ 𝑦 𝑖𝑓 (𝑥 ∈ 𝐿𝛼 ∩↓ 𝑎, 𝑦 ∈ 𝐿𝛽 ∩↓ 𝑎, 𝛼 ≠ 𝛽) 𝑜𝑟 (𝑥 = 𝑦 ∥ 𝑎),

(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Corollary 5. Consider a finite lattice-ordered index set (Λ, ⊑) 
and a lattice-based sum of bounded lattices  
𝐿 =⊕𝛼∈Λ (𝐿𝛼 , ≤𝛼 , ⊥𝛼 , ⊤𝛼). If we put 𝑆𝛼 = 𝑆𝑀

𝐿  and 𝑇𝛼 = 𝑇𝑀
𝐿  

for all 𝛼 ∈ Λ in 𝑉∨ and 𝑉∧ in Theorem 2, then we obtain the 

following nullnorms  

𝑉∨
𝑀 (𝑥, 𝑦) = {

𝑥 ∧ 𝑦 𝑖𝑓𝑥, 𝑦 ∈↑ 𝑎 ,
(𝑥 ∧ 𝑎) ∨ (𝑦 ∧ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and  

𝑉∧
𝑀 (𝑥, 𝑦) = {

𝑥 ∨ 𝑦 𝑖𝑓 𝑥, 𝑦 ∈↓ 𝑎,
(𝑥 ∨ 𝑎) ∧ (𝑦 ∨ 𝑎) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Example 4. Consider the lattice-ordered index set (Λ, ⊑) 
shown in Fig. 4 and the lattice-based sum of bounded lattices 𝐿 

shown in Fig. 5 where 𝐿⊥Λ = {0}, 𝐿𝛼 = {𝑥, 𝑦, 𝑧, 𝑡, 𝑔},  

𝐿𝛽 = {𝑔}, 𝐿𝛿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, and 𝐿⊤Λ = {𝑔, ℎ,𝑚, 𝑛, 1}. Let 

𝑇⊤Λ be the t-norm defined on 𝐿⊤Λ whose values are written in 

Table 1 and 𝑆𝛿 be the t-conorm on 𝐿𝛿 whose values are written 

in Table 2. Then the functions 𝑉∨ and 𝑉∧ whose values are 

written in Table 3 and Table 4 are, respectively, nullnorms on 

𝐿 with zero element 𝑎 which are constructed using equations 

(2) and (3), respectively. 

 

Fig 4. The lattice (𝚲, ⊑) of example 4 

 

Fig 5. The lattice 𝑳 of example 4 

Table 1. The t-norm 𝑻⊤𝚲 on 𝑳⊤𝚲 

𝑇⊤Λ  𝑔 ℎ 𝑚 𝑛 1 

𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 

ℎ 𝑔 ℎ 𝑔 𝑔 ℎ 

𝑚 𝑔 𝑔 𝑔 𝑔 𝑚 

𝑛 𝑔 𝑔 𝑔 𝑔 𝑛 

1 𝑔 ℎ 𝑚 𝑛 1 

 

Table 2. The t-conorm 𝑺𝜹 on 𝑳𝜹 

𝑆𝛿 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 

𝑏 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 

𝑐 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 

𝑑 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 

𝑒 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑓 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
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Table 3. The nullnorm 𝑽∨ on 𝑳 of example 4 

𝑉∨ 0 𝑥 𝑦 𝑧 𝑡 𝑔 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 ℎ 𝑚 𝑛 1 

0 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑥 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑦 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑧 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑡 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑎 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑎 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

ℎ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑔 𝑔 ℎ 

𝑚 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑚 

𝑛 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑛 

1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑚 𝑛 1 
 

Table 4. The nullnorm 𝑽∧ on 𝑳 of example 4 

𝑉∧ 0 𝑥 𝑦 𝑧 𝑡 𝑔 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 ℎ 𝑚 𝑛 1 
0 0 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑥 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑦 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑧 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑡 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑔 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑑 𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑒 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
ℎ 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑔 𝑔 ℎ 
𝑚 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑚 
𝑛 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑛 
1 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑚 𝑛 1 

 

Example 5. Consider the lattice-ordered index set (Λ, ⊑)  and 

the lattice-based sum of bounded lattices 𝐿 of example 4. With 

the same data of example 4, then the functions 𝑉∨
𝐼 and 𝑉∧

𝐼 whose 

values are written in Table 5 and Table 6 are, respectively, 

nullnorms on 𝐿 with zero element 𝑎 which are constructed 

using equations (4) and (5), respectively. 

Table 5. The nullnorm 𝑽∨
𝑰  on 𝑳 of example 5 

𝑉∨
𝐼 0 𝑥 𝑦 𝑧 𝑡 𝑔 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 ℎ 𝑚 𝑛 1 

0 0 0 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑥 0 𝑥 0 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑦 0 0 𝑦 0 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑧 0 0 0 𝑧 0 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑡 0 0 0 0 𝑡 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 

𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑎 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑎 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

ℎ 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑔 𝑔 ℎ 

𝑚 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑚 

𝑛 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑛 

1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑚 𝑛 1 

Table 6. The nullnorm 𝑽∧
𝑰  on 𝑳 of example 5 

𝑉∧
𝐼 0 𝑥 𝑦 𝑧 𝑡 𝑔 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 ℎ 𝑚 𝑛 1 
0 0 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑥 𝑎 𝑥 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑦 𝑎 𝑔 𝑦 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑧 𝑎 𝑔 𝑔 𝑧 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑡 𝑎 𝑔 𝑔 𝑔 𝑡 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑔 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑔 
𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 𝑎 𝑐 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑑 𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑒 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑒 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
ℎ 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑔 𝑔 ℎ 
𝑚 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑚 
𝑛 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑔 𝑔 𝑔 𝑛 
1 𝑎 𝑔 𝑔 𝑔 𝑔 𝑔 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 ℎ 𝑚 𝑛 1 
 

Example 6. Consider the lattice-ordered index set (Λ, ⊑) of 

example 4 and its lattice-based sum of bounded lattices 𝐿 in  

Fig. 6. Let 𝑆⊥Λ = 𝑆𝐷
𝐿 , then the functions 𝑉∨ and 𝑉∧ whose values 

are written in Table 7 and Table 8, respectively, are nullnorms 

on 𝐿 with zero element 𝑎 which are constructed using equations 

(2) and (3), respectively. Note that, 𝑎 is inside 𝐿𝛿, then 

according to Remark 3, the t-norm 𝑇𝛿 and the  

t-conorm 𝑆𝛿 are considered to be the minimum 𝑇𝑀
𝐿  and the 

maximum 𝑆𝑀
𝐿 , respectively. 

 

Fig 6. The lattice 𝑳 of example 6 

Table 7. The nullnorm 𝑽∨ on 𝑳 of example 6 

𝑉∨ 0 𝑥 𝑦 𝑧 𝑡 𝑠 𝑟 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 1 
0 0 𝑥 𝑦 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑥 𝑥 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑦 𝑦 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑡 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑠 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑟 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑎 
𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑐 𝑎 𝑐 𝑎 𝑎 
𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑑 𝑎 𝑑 𝑎 𝑎 𝑎 
𝑒 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑐 𝑐 𝑎 𝑐 𝑎 𝑎 
𝑓 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 
1 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑓 1 
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Table 8. The nullnorm 𝑽∧ on 𝑳 of example 6 

𝑉∧ 0 𝑥 𝑦 𝑧 𝑡 𝑠 𝑟 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 1 

0 0 𝑥 𝑦 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑥 𝑥 𝑧 𝑧 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑦 𝑦 𝑧 𝑧 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑧 𝑧 𝑧 𝑧 𝑧 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑡 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 

𝑠 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 

𝑟 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 𝑎 𝑎 𝑎 𝑏 𝑐 𝑑 𝑎 𝑎 𝑎 

𝑐 𝑐 𝑐 𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 𝑐 𝑐 𝑎 𝑎 𝑎 𝑎 

𝑑 𝑑 𝑑 𝑑 𝑑 𝑎 𝑎 𝑎 𝑎 𝑑 𝑎 𝑑 𝑎 𝑎 𝑎 

𝑒 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 

𝑓 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 𝑓 

1 𝑎 𝑎 𝑎 𝑎 1 1 1 𝑎 𝑎 𝑎 𝑎 𝑓 𝑓 1 
 

6. CONCLUDING REMARKS 
In this paper, based on the lattice-based sum scheme that has 

been recently introduced by El-Zekey et al. (see [9]); new 

methods for constructing nullnorms on bounded lattices which 

are a lattice-based sum of their summand sublattices are 

developed. Subsequently, the obtained results are applied for 

building several new nullnorm operations on bounded lattices. 

As a by-product, the lattice-based sum constructions of t-norms 

and t-conorms obtained by El-Zekey (see  [10]) are obtained in 

a more general setting where the lattice-ordered index set need 

not to be finite and so-called t-subnorms (t-subconorms) can be 

used (with a little restriction) instead of t-norms (t-conorms) as 

summands. Furthermore, new idempotent nullnorms on 

bounded lattices, different from the ones given in [6], have been 

also obtained. It is pointed out that, unlike [6], in our 

construction of the idempotent nullnorms, the underlying 

lattices need not to be distributive. We remark that lattice-based 

sum constructions of other aggregation functions on bounded 

lattices could also be taken into account (compare also, e.g. [10, 

11]). 
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