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ABSTRACT

Nullnorms on bounded lattices are generalizations of t-norms
and t-conorms with a zero element laying anywhere in the
underlying lattices. In this paper, new methods for constructing
nullnorms on bounded lattices are proposed. The proposed
construction methods are based on the lattice-based sum of
lattices that has been recently introduced by El-Zekey et al. (see
[9]), for building new (bounded) lattices from fixed ones
indexed by a (finite) lattice-ordered index set. Subsequently,
the new construction methods are applied for building several
new families of nullnorms on bounded lattices. As a by-
product, lattice-based sum constructions of t-norms and t-
conorms on bounded lattices have been obtained. Furthermore,
new idempotent nullnorms on bounded lattices have been also
obtained.
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1. INTRODUCTION

Nullnorm operators on the unit interval are special aggregation
operators that have proven to be useful in many fields like
expert systems, neural networks, fuzzy quantifiers, and fuzzy
logics, see e.g. [13] and the references therein. They were
originally introduced in [2, 17] as generalizations of triangular
norms (t-norm for short) and triangular conorms
(t-conorm for short) with the zero element a laying anywhere
in the unit interval and have to satisfy some additional
conditions. Nullnorms on the unit interval have been also
studied in the papers [8, 18, 19] and many others.

In [15] nullnorms have been studied on bounded lattices where
the existence of nullnorms with the zero element a laying
anywhere in arbitrary bounded lattice L has been proven with
underling t-norms and t-conorms on L. As a by-product, the
existence of the smallest nullnorm and of the greatest nullnorm
has been shown. Moreover, in [14], the existence of idempotent
nullnorms on a distributive bounded lattice L has been also
shown for any zero element a € L\{L, T}. Recently an
increasing interest of nullnorms on bounded lattices can be
observed, see e.g. [4-6, 12] and many others.

In this paper, new methods for constructing nullnorms on
bounded lattices are proposed. The proposed construction
methods are based on the lattice-based sum of lattices that has
been recently introduced by El-Zekey et al. (see [9]), for
building new (bounded) lattices from fixed ones indexed by
a (finite) lattice-ordered index set. Subsequently, the new
construction methods are applied for building several new
families of nullnorms on bounded lattices. As a by-product,
lattice-based sum constructions of t-norms and t-conorms on
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bounded lattices have been obtained. Furthermore, new
idempotent nullnorms on bounded lattices, different from the
ones given in [6], have been also obtained. We point out that,
unlike [6], in our construction method of the idempotent
nullnorms, the underlying lattices need not to be distributive.

This paper is organized as follow. In Section 1, some basic
notions are recalled. In Section 2, the basic results concerning
the lattice-based sum of bounded lattices have been shortly
recalled. In Section 3, lattice-based sum construction methods
of nullnorms on bounded lattices have been developed. In
Section 4, others lattice-based sum constructions of nullnorms
leading to new idempotent nullnorms on bounded lattices have
been also investigated. In Section 5, the results, from Section
3 and 4, are applied for constructing several new nullnorms on
bounded lattices. Finally, some concluding remarks are added.

Definition 1. ([1, 7]) A bounded lattice (L, <, L, T) is a lattice
which has the top and bottom elements, which are written as T
and L, respectively, i.e. there exist two elements T, L€ L such
that L< x < T, forall x € L.

Definition 2. ([3, 16]) An operation T:L? - L (S:L?> > L) is
called a t-norm (t-conorm) if it is commutative, associative,
increasing with respect to both variables and has a neutral
elemente = T (e =1).

Note that, the t-norm and the t-conorm are dual of each other.
Therefore, by duality, the general properties of t-norms can be
translated to their dual t-conorms.

Example 1. For any bounded lattice (L, <, 1, T), there exist at
least two t-norms and two t-conorms, as follows
i. The minimum t-norm Th: 12 > L, Th(x,y) =
xXAYy.
ii. The drastic  product t-norm Ti:1?2 > L,
L _(xAy if Te{xy},
T5(y) = {J_ o};herwise.
iii. The maximum t-conorm Sk > 1,
Sh(ey) =xVvy.
iv. The  drastic sum  t-conorm  S5:12 > L,
L _(xVvy if Le{x,vy},
S50 y) = {T otherwise.

Definition 3. ([15]) Let (L, <, L, T) be a bounded lattice. A
commutative, associative, non-decreasing in each variable
function V:L? — L is called a nullnorm if there is an element
a € L such that V(x,1) =x for all x <a, V(x,T) =x for
all x > a.

It can be easily verified that V(x,a) = a for allx € L, i.e.
a € L is the zero element of V.
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Definition 4. ([1, 7]) Let (L,<,L1,T) be a bounded lattice
and a € L. The downset of a denoted | a and the upset of a
denoted T a are given by

la={x€elLlx <a}
Ta={x€Llx>=a}

2. LATTICE-BASED SUM OF BOUNDED
LATTICES

In this section we briefly recall the lattice-based sum
construction of lattice ordered sets introduced in [9] for
building new lattice-ordered structures from the fixed ones
indexed by a lattice-ordered index set.

In the sequel, (A, E) denotes a finite lattice-ordered index set.
The top and bottom elements of (A, =) will be denoted by T,
and L ,, respectively. Further, each summand (L, <4, Lo, To)
is a bounded lattice has a top element T, and a bottom
element 1, for each a € A. We will use the lowercase Latin
letters such as “x”, “y” and “z” to ranging over the elements
of L, and the lowercase Greek letters such as “a”, “B” and “6”
to ranging over the elements of A. If there exist 3,8 € A such
that B is incomparable with &, then we will write g || §. If
B,8 € Asuchthat § £ & but B # &, then we will write 8 = 6.
The number of elements (the cardinality) of a set L will be
denoted by |L|.

Definition 5. ([9]) Consider a finite lattice-ordered index
set (A, E). The A-sum family is a family of bounded lattices
{(Lay < Lo Ta)}aen that satisfy for all a, B € A with a = B8
the sets L, and Ly are either disjoint or satisfy one of the
following two conditions:

i. Lg N Lg ={xqp} with @ = B, where x, is both the top
element of L, and the bottom element of Lg, and where
for each e € Awith @ = e = 8 we have L, = {x,z}, also
forall §,ye Awithdlly, =B and a = y we have
Ls = {ysy} Or L, = {z5,} where y;, is the top element
of Linfs,3 and zs, is the bottom element of L5

ii. 1<|LgNLg|<2 with allp, and for each
Xap = Lq N Lg, xqp is the top element of both L, and Lg
and the bottom element of Ly g3, OF X is the bottom
element of both L, and Lz and the top element of

Linfta,py-

Definition 6. ([9]) Let (A, E) be a finite lattice-ordered index
set and {(La, <a) Lo, Ta)laen be a A-sum family of bounded
lattices. The lattice-based sum @ yep (Lo, <a» Lo To) is the
set L = Ugea Ly €quipped with the order relation < given by:

x <y ifandonlyif

Ja € Asuchthatx,y € Loand x <, y
or 1)
3a, B € Asuchthat (x,y) € Ly X Lg and a =

Theorem 1. ([9]) Let (A, E) be afinite lattice-ordered index set
and let {(Lq, <a, Lo Ta)}aea be a A-sum family of bounded
lattices. PutL = Ugep La» then (L,<,14L,7T)=
Daer Loy <a Lo To) isabounded lattice.

Note that, the partial order relation < on the lattice L in
Theorem 1 obtained by setting x <y in L if and only if
x Ay = x coincides with the partial order relation given in (1).

One obtains the same partial order relation from the given
lattice by setting x < y inLifandonlyifx vy = y.

Remark 1. We point out that, the lattice-ordered index set in
[9] need not to be finite. But, for our purposes in this work, and
from a practical point of view, from the very start, we assume
that the index set is finite.

Note that, the strategy just described is focuses on the union of
the carriers and an order consistent with both the order of the
underlying bounded lattices and the order of the lattice-ordered
index set (see Definition 6). Consequently, the order relation
for elements from different summands is inherited from the
lattice-ordered index set.

Example 2. Consider the lattice-ordered index set (A,E) in
Fig. 1. Then, the family associated with the structure in Fig. 2
is not a A-sum family because L, NLg = {xqp} with
Xap = Tq =J_l;,6 cCpBacy but neither Ls = {Tinf{ﬁ,y}}
nor L, = {Lsup(s,3} Violating the condition (i) in Definition 5.
Note that, although the structure in Fig. 2 s
a bounded lattice, its order relation isn’t consistent with the
order of the index set, since for x € Ls andy € L, we have x <
v but the only elements § and y in the index set associated with
x and y, respectively, are incomparable elements in A. One of
modifications of the family associated with the structure in Fig.
2 by putting Ls = {Tings,}} Which produces the A-sum family
of bounded lattices in Fig. 3. In this case, as x and y just
described, we havex < y,x € Ls N L,, and y € L,, and hence
we have L,,y € A associated with x and y, respectively, such
that Ly y.

Ja

Lo
Fig 1. The lattice (A, £) of example 2

Note that, consequently from Definition 6 and Theorem 1, if
the lattice-ordered index set is linear, then the lattice-based sum
is reduced to the ordinal sum. For more details see [9].

We end this section by the following lemma, from [10], which
is a direct consequence from Definition 6 and Theorem 1.

Lemma 1. ([10]) Let (A, £) be a finite lattice-ordered index set
and let L =@gep (Lo, <a»Lla To) be a lattice-based sum of
bounded lattices. Assume that there exist x,x, € L such that
there is no a € A such that {x;,x,} S L,

i If x; < x,, then there exist a,,a, € A such that
(X1,%2) € Lg, X Lo, with a; ca, and for all
7y € Lo, and for all z, € L,, we have z; < z,.

ii. If x1 Il x5, then forall @y € I, and a; € I, we have
ay la, and for all z; € Ly \{Lq,, Tq,} and for
all z; € Lg,\{Lq, Ta,} Wehave zy |l z;.

Example 3. Consider the A-sum family of bounded lattices in
Fig. 3. Itis clear that, forall x € L, andy € Lg we have x < y
(sincea = B). Further, for all a€ Lg\{Llp Tp} and
b € L,\{Ll,, T,}wehave a |l b (since B Il y).
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Fig 3. The A-sum family of example 2

3. LATTICE-BASED SUM CONSTRUCTION
OF NULLNORMS ON BOUNDED LATTICES

In this section, based on the lattice-based sum of bounded
lattices (see Section 2), we introduce a new method for
constructing nullnorms on bounded lattices.

Remark 2. Under the assumption that each summand of the
A-sum family is a bounded lattice, then for some lattice-ordered
index set (A, =) and for any @ € A we have that for any t-norm
T, on L, and for any t-conorm S, on L,

T,(x,y) =xAy,S,(x,y) =xVy.
when x or y are equal to one of the boundaries of L,,.

Theorem 2. Consider a finite lattice-ordered index set (A, E)
and let L =@qep (Lo, <o, Lo, To) be a lattice-based sum of
bounded lattices. Let a € L with a € {L,, T,} for some ¢ € A
and  (T)aea ((Se)aea) be a family of t-norms
(t-conorms) on the corresponding summands (Lg)qea- Then
the functions V,: L? - L and V,: L? — L defined as follow

Sa(x,y) if x,yE€LsNla,
v Ty ifx,y€lgnla,
V(0 y) = XNy ifx€LynNMa,y€lgntaa#p,

k(x Aa)V (yAa) otherwise.

0]

(S, (x,) ifx,y€l,nla,

V(o y) = Tp(x,y) ifx,y€lgnta,

A xVy ifxelynlay€elgnlaa#p,
(xva)A(yVa) otherwise.

(3)
are nullnorms on L with zero element a.

Proof: The proof runs only for the operation V4,. The operation
V, has a similar proof.

First, we note that, for all x,y € L with x,y €l a and there is
no a€A such that {x,y}<L, then we have
VWi, y) =(xAa)v(yAa)=xVy.Also forall x €T a and
for ylla ory €l a, we have V,(x,y) = (x Aa)V(y Aa) =
aV (yAa)=a, by absorption. We will always use this
without mention.

It is necessary to check that the operation V,, is well-defined. A
problem can only arise if (x,y) €LyXLg with
x € Ly N Lg for some a, § € A and say,

i. x,y €l q,
a) acp,
VW, y) =Sgx,y) =xVvgy =y
if we consider that x, y € Lg, and
Wx,y)=xvy=y
if we consider that x € L, andy € Lg. Thus
producing the same result in both cases

b) a |l B, then either x = T, = T and hence,
Wk y) =Sp(x,y) =xVgy=xVy=x
orx =L1,=1z and hence,
W, y) =Sglx,y) =xVgy=xVy=y

ii. x,y €T a. This case is dual to case (i) has a dual proof
due to the duality between the t-norm and the
t-conorm.

Now, we need to prove that V,, is a nullnorm on L with zero
element a.

It is easy to see the commutativity of Vi, due to the
commutativity of the t-norm and the t-conorm defined on each
summand and A and Vv on L.

Zero element: We prove that a is the zero element of V.. The
proof is split into all the possible cases for some x € L, as
follows.

i. x €l a,
a) There exist some a €A such that
{x,a} € L,, then (from Remark 2) we
have,
Vy(x,a) = Sa(x,a) =xVaa=a
b) There is no @ € A such that {x,a} € L,,
then,
V(x,a) =xVa=a
ii. x €T a. This case has a dual proof of case (i) due to
the duality between the t-norm and the t-conorm.
iii. x |l a. Then directly from the definition of V,, we
have
V(x,a) =a
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Monotonicity: We prove that if x < y inL, then for all z € L,
V(x,z) <V, (y,2). The proof is split into all the possible
cases, as follows,

Case (1): Let x,y €l a. Then we have the following subcases
Subcase 1(a): z €l a,

i There exist some a € A such that {x,y} € L,. If
z € L, then monotonicity holds trivially due to the
monotonicity of S, on L,. If z & L,, then

V(x,z) =xvz<yvz=W(y2)

ii. There is no @ € A such that {x,y} € L,.

a) If x and z are in the same summand, we
observe it by consider {x,z} S Lg and
y€Ls with g+ for somepS,6 €A,
then from Lemma 1, we have either
BedsorB IS If f =4, then

V(x,2) = Sg(x,2z) <y

=yvz=W(,2)
If B I 5, then we have either x € {1g, Ty}
and hence,
W(x,z) =Sg(x,z) =xVz<yVz
= Vv(}’; Z)

or x €Lg\{Lp, Tp}, then necessarily
y = T4 and hence,
V(x,2) = Sg(x,2z) <y
=yvz=W(,2)
b) If y and z are in the same summand, we
observe it by consider {y,z} c L, and
x & L, for some a € A, then
W(x,2)=xvz<yVvz<S,(y,2)
= VV(yr Z)
c) All arguments are in different summands,
V(x,z) =xvz<yvz=W(y,2)

Subcase 1(b): z €T aq,

Wx,z) =a=V(,2)
Subcase 1(c): z |l a,

V(x,z2) =(xANa)V(zAa)
<Aa)Vv(zAa)
= VV(y'Z)

Case (2): Letx €T a,theny €T a.

i z€la,
Wx,z) =a=V(y,2)
ii. z €7 a. In this case, the proof is a dual proof of case
(1) due to the duality between the t-norm and the
t-conorm.
iii. z |l a,
W z) =a=W(y,2)
Case (3): Letx €l a,y €T a.

i z €l a. Inthis case we have either x and z are in the
same summand or x and z are in different
summands. In both cases and due to the t-conorm
and v on L we have,

V(x,z) <a=W(y2)

ii. z €T a. Similarly, as in case (i) we have
Vy(y,z) = a and hence,

V(x,z) = a <V (y,2)
iii. zlla,

Wx,z) =(@xAa)V(zAaa) <a=V,(y,2)
Case (4): Letx €l a,y |l a.

i z€la,
a) There exist some a €A such that
{x,z} € L,. Then we have either
yAa €L, oryAhaélL, Ifyna€lL,,
then necessarilyy € {L,, To}. In case
thaty Aa = T, then
VW(x,z) = S,(x,2) < T,
=yAa=yAa)Vz
=W, 2)
In case that y A a =1, then necessarily
x =1, and hence
Vy(x,2) =S,(x,z) =xVz
=z=(Aa)Vz
=W, 2)
Ifyna &L, then yAna>u for all
u € L, and hence,
Vy(x,2) =S, (x,2) <yAa
=ravz=W(1,2)
b) There is no a € A such that {x, z} € L,
then
VW(x,z) =(xAa)V (zAa)
<(Aa)V(zAa)
= VV(va)
ii. z€la,
Wx,z) =a=V(y,2)
iii. z |l a. This case is similar to subcase 1(c) has
a similar proof.

Case (5): Letx l a,y €T a.

i. z€la,
W,2)=(xAa)V(zAra) <a=W(y,z)
ii. z €T a. In similar way of case 3(ii) we have
Vy(y,z) = a and hence,
W(x,z) =a<V,(y,2)
iii. z |l a,
W,2)=(xAa)Vv(zAra) <a=W(y,z)

Case (6): Letx Il a,y Il a.

i z €l a. This case is similar to case 4(iii) has
a similar proof.
ii. z€Tla,
Wx,z) =a=W(,2)
iii. z |l a,
W(x,z) =(xAa)V(zAa)
SAraV(zAa) =W (y,2)

Associativity: We prove that v, (V, (x, y),2) = V,(x, (3, 2))
forall x, y, z € L. Again, the proof is split into all possible cases
by considering the relationship between the arguments x, y, z
and a, as follows.

Case (1): All arguments are from | a.

i. There exist some a € A such that {x,y,z} € L,. In
this case associativity holds trivially due to the
associativity of S, on L.

ii. All arguments are from different summands,

VV (Vv(ny)'Z) = VV (XV)’.Z)
=xVyVvz
= VV (xvy \ Z)
= VV(x' VV(yr Z))
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In this case, we must note that, if x vV y and z are in
the same summand, then necessarily x V y is equal to
one of the boundaries of this summand and hence
(from Remark 2) we have V, (x Vy,z) =xVyV z.

Exactly two arguments are from the same summand.
We observe it by considering the following cases.

a) There exist some a €A such that
{x,y} S L,andz & L,. If x or y is equal
to one of the boundaries of L, then (from
Remark 2) associativity holds trivially
due to the associativity of v onlL.
Therefore, we assume that x,y € L,\
{La Tol, then we compare z with x and
v, as follows
If x > zory > z, then

VV (Vv(x: J’), Z) = VV(Sa(xl }’), Z)
=S,(x,y)Vz
= Sa(xr }’)
=S,(x,yVz)
= Vv(x' W, Z))
If x <zory <z then
VV (Vv(x: Y): Z) = VV(Sa(xl Y), Z)
= Su(x, }’) Vz
=Z
=yvz=W(2)
=xVvVW(,2z)
= VV(X' Vv(y' Z))
Ifx |l zory | z, then
xVz=yVz=S,(x,y)Vz

and hence,

VW W(x,¥),2) = V(Se(x,¥),2)
=S, (x,y)Vz
=yvz=W(y,2)
=xVvVW(y,2)

= Vv(x: (. Z))

b) There exist some B €A such that
{x,z} S Lg andy & Lg. This case is
similar to case (a) has a similar proof.

c) There exist some & €A such that
{yv.z}SLs andx & Ls. This case is
similar to case (a) has a similar proof.

Case (2): All arguments are from T a. This case has a dual
proof of case (1) due to the duality between t-norm and
t-conorm.

Case (3): All arguments are incomparable with a,

% G2 =¥ ((kra)v(ra)2)
=(xAa)vViyAna)V(zAa)
=W(x,yAa)V(zAa))
= Vv(xr Vv(}’rz))

Case (4): Exactly two arguments are from | a.

x,y €l a,z > a. In this case we have either x and y
are in the same summand or x and y are from
different summands. In both cases, we have
Vy(x,y) < a and hence,

VW (W(xy),z) =a=W(xa) = Vv(x’ 4672 Z))
x,y €l a,z |l a. Then from the fact thatzAa < a,
the associativity holds by a proof exactly similar to
case (1) but withx,y el aandzAa < a.
x,z€lay>a,

Vi.

Case (5):

Vi,

Case (6):

Vi.

VV (VV(xl }’),Z) = VV(arZ) =a

Vv(x' |62 Z)) =Wxa)=a
x,z €l a,y Il a. This case is similar to case 4(ii) has
a similar proof.
v,z €l a,x > a. This case is similar to case 4(i) has
a similar proof.
v,z €l a,x || a. This case is similar to case 4(ii) has
a similar proof.

Exactly two arguments are from T a.

x,y €T a,z < a. In this case we have either x and y
are in the same summand or x and y are in different
summands. In both cases, we have V,,(x,y) = a and
hence
Ve (W(x,y),2) =a

Vv(x: |62 Z)) =Wxa)=a
x,y €T a,z |l a. This case is similar to case 5(i) has
a similar proof.
x,z€la,y<a.

VV (Vv(x' Y)'Z) = Vv(al Z) =a

V(W (,2) =W(x,a) =a
x,z €T a,y Il a. This case is similar to case 5(iii) has
a similar proof.
v,z €T a,x < a. In this case we have either y and z
are in the same summand or y and z are in different
summands. In both cases, we have V,(y,z) = a and
hence

VV (Vv(x' Y)'Z) = Vv(x' a) =a

V(x, W(y,2)) =a

v,z €T a,x || a. This case is similar to case 5(v) has
a similar proof.

Exactly two arguments are incomparable with a.

xlaylazela.
In this case we have x Aa < a and y A a < a with
xAa and y Aa are on the boundaries and hence
(from Remark 2) we have
% 3,2 =V, ((xAa) v A0),2)
=xAa)ViyAa)V(zAa)
V(e W (y,2)) = Vy(x, y Aa) vV (z A a))
=@xAa)ViyAa)V(zAa)
xlaylazela.
% 3,2 =V, (A0 v AD),2)
=a
V(xW(y,2) =V (x,a) =a
xlla z |l ay€la. This case is similar to case 6(i)
has a similar proof.
xlazlayé€ma,
VV (Vv(x' Y);Z) = Vv(al Z) =a
V(W (,2) =W (x,a) =a
yllazlax€la. This case is similar to case 6(i)
has a similar proof.
yllazll ax €T a. This case is similar to case 6(iv)
has a similar proof.

For other possibilities we distinguish the following cases

x€lay€etazla,
W W(x,y),2z) =V(a,z) =a
Vv(x, W(y, z)) =W(x,a) =a
x€elaylazela,

%My, =% ((kAa)vyAm)z) =a
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Vv(x, Wy, z)) =W(xa)=a
iii. x€tay€elazla,
V\/ (Vv(x'}’)'z) = Vv(a:Z) =a
Vv(x, W (y, z)) = Vv(x, Aa)v(zAa a))
=a
iv. x €T a,y |l a,z 1 a. This case is similar to case (iii)
has a similar proof.

V. xlla,yla,z€Ta. This case is similar to case (ii)
has a similar proof.
Vi. xlla,yTa,zl!la.Thiscase is similar to case (i) has

a similar proof.

In case of a = T we obtain t-conorms and in case of a =1 we
obtain t-norms. Consequently, we get, as a corollary, the
following lattice-based sum constructions of t-norms and
t-conorms obtained by El-Zekey (see [10]) in a more general
setting where the lattice-ordered index set need not to be finite
and so-called t-subnorms (t-subconorms) can be used (with a
little restriction) instead of t-norms (t-conorms) as summands
in the lattice-based sum construction of t-norms (t-conorms).

Corollary 1. With all the assumptions of Theorem 2 the
nullnorm functions V, and V, as defined in equations (2) and
(3), respectively, satisfy the following:
i. If a =1, then
V(o) = VoG ) = {
isat-normon L.

T (x,y) if (x,¥) € Ly X Lg,
XAy otherwise,

ii. If a =T, then
W) = VoG ) = {
is at-conormon L.

4. IDEMPOTENT NULLNORMS ON
BOUNDED LATTICES

In this section, others lattice-based sum construction methods
of nullnorms leading to new idempotent nullnorms on
bounded lattices are investigated.

Se(x,y) if (x,y) € Ly X Lg,
xVy otherwise,

Theorem 3. Consider a finite lattice-ordered index set (A, E)
and let L = Ugep Lg- Let a € L with a € {1,, T,} for some
a €A and (Tp)aea ((Sx)aea) be a family of t-norms
(t-conorms) on the corresponding summands (Lg)gea- Then
the functions V}: L? - L and V/: L? - L defined as follow

Wxy) =
Sa(x,y) if ,y €L Nl a,
Tp(x,¥) ifxyelgnla,
XNy if(xELanTa,yEL,;nTa,a;t/?)or(x:y||a),
k(x Aa)V (yAa) otherwise.
4
and
Vilx,y) =
Sa(x,y) if x,y€L,Nnla,
Tp(x, ) if x,y€lLgnTa,
xXVy if(xELanla,yELﬁnla,aiﬁ)or(x:yIIa),
t(x Va)A(yVva) otherwise.
()

are nullnorms on L with zero element a.

Proof: The proof runs only for the operation V. The operation
V! has a similar proof.

The commutativity, the monotonicity and the fact that a is the
zero element of i/ have exactly the same proof as the
corresponding one from Theorem 2. It is only remaining to see
the associativity of V.

Associativity: We prove that
Vi (V(x,y),2) = Vi(x,Vi(y,2)) forall x,y,z € L.

Associativity of V! is preserved in all cases by exactly the
same proof of the corresponding cases from Theorem 2, but
only one, namely if at least two equal arguments are
incomparable with a. Therefore, we assume that x =y Il a
and distinguish the following cases

Case (1): z Il a with z # x (equivalent to z # y)

W (W (6, y),2) =W (x Ay,z2)
=V (x,2)
=xAa)V(zAa)

VW (VW (,2) =V (x, A2V (zA))
=(xAa)ViyAa)V(zAa)
=xAa)V(zAa)

Case (2):z €l q,

W W (x,y),2) =V (x Ay,z)
=W (x,2)
=xAa)V(zAa)

VW (VW (,2) =V (x, AV (zA))
=(xAa)VviyAra)Vv(zAa)
=xAa)V(zAa)

Case (3):z €T a,

W (W (x,y),2) = V] (x Ay, 2)
=W (xz)=a

W (VW 32) =V (x, yAa) Vv (zAa))
=W x@Arava)
=W (xa)=a

All other cases can be shown in similar way.

Corollary 2. If we put T, =T and S, = S& on L, for all
a € Ain V) and V/ in equations (4) and (5) in Theorem 3, then
the following functions are idempotent nullnorms on L with
zero element a.

e XAy if (xy Ela)or (x=ylla),
v (xy) = {(x Aa)V (yAa) otherwise.
and
| C(xvy if by €ela)or (x=yla),
Vi (x,y) = {(x Vva)A(yVa) otherwise.

Remark 3. The zero element a of the nullnorms V,, V,,, Vi and
V! was restricted to be one of the boundaries of some summand
of L. If a is inside some summand, then V,,, V,, V! and V! may
not work to construct nullnorms on L, for example, if we
consider a lattice index set (A, E) and a lattice-based sum of
bounded lattices L and there exist some a € A such that
{x,y,a} S Lywith L,<x<a<y<TgandT, =TS, S, =
SE then from Theorem 2 and Theorem 3 we have
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Vy(x,a) = Vy(x,a) = VI (x,a) = Vi(x,a) = S,(x,a)
=Shk(x,a) =Ty #a

V\/(yra) = V/\(y.a) = V\f(y.a) = V/{(y;a) = Ta(y'a)
=TE(y,a) =L,#a

Violating the zero element property of the nullnorm operator.
However, the functions V., V,,, V! and V! are still nullnorms on
L in case that a is inside some summand if and only if the
t-norm and the t-conorm defined on this summand are fixed to
be the minimum T} and the maximum S, respectively.

5. Applications
In this section, the obtained results are applied for building
several new nullnorm operations on bounded lattices.

Corollary 3. Consider a finite lattice-ordered index set (A, £)
and a lattice-based sum of bounded lattices
L=®gep Loy <e» Lo To). If we put S, =Sk and T, = T}
for all @ € Ain ¥, and V, in Theorem 2, then we obtain the
following nullnorms

Ta if x,y € (Lg NL a)\{Lg},
D _ )i if x,y € (Lg T a)\{T4},
VV (X;J’) - .
[ XAy ifx€LyNTa,y€lgnTaa+p,

k(x Aa)V (yAa) otherwise.

Ta if x,y € (Lg Ny a)\{Ls},
VP (x,y) = L if x,y € (Lﬁ nT a)\{Tﬁ},
N jxVvy ifx€LenNlay€elgnlaa+p,

k(x Va)A(yVva) otherwise.

Corollary 4. Consider a finite lattice-ordered index set (A, E)
and a lattice-based sum of bounded lattices
L=0gepr Lo <a»La Te). If we put S, =S5 and T, = Tk
for all @ € A in V! and V/ in Theorem 3, then we obtain the
following nullnorms

Vi(x,y) =

(Ta if x,y € (Lg NV a)\{L4},
Lg if x,y € (Lg nT a)\{T4},
XAy if(xELanTa,yEL,;nTa,a;t/?)or(x:yIIa),
(xAa)Vv(yAa) otherwise.

Vi(x,y) =

(Ta if x,y € (Lg NV a)\{Lg},
Lg if x,y € (Lg nT a)\{T4},
xVy if(xELanla,yEL,;nla,a;t/?)or(x:yIIa),
(xva)A(yVva) otherwise.

Corollary 5. Consider a finite lattice-ordered index set (A, &)
and a lattice-based sum of bounded lattices
L=®gepr Lo <a»Lla To). If we put S, =Sk and T, = T,
for all @ € Ain V,, and V, in Theorem 2, then we obtain the
following nullnorms

u _(xAy ifx,y €t a,
W (x,y) = {(X Aa)V (yAa) otherwise.
and
” _(xVvy if x,y €l a,
Vi (x,y) = {(x Va)A(yVa) otherwise.

Example 4. Consider the lattice-ordered index set (A, E)
shown in Fig. 4 and the lattice-based sum of bounded lattices L
shown in Fig. 5 where L,, ={0}, L,={xy2tg9}
Lg ={g}, Ls ={a,b,c,d,e,f}, and Lt, = {g,h,m,n,1}. Let
T+, be the t-norm defined on L+, whose values are written in
Table 1 and Sg be the t-conorm on Ls whose values are written
in Table 2. Then the functions ¥, and V, whose values are
written in Table 3 and Table 4 are, respectively, nullnorms on
L with zero element a which are constructed using equations
(2) and (3), respectively.

Ta

La

Fig 4. The lattice (A, £) of example 4

Fig 5. The lattice L of example 4

Table 1. The t-norm T+, on L,
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Table 6. The nullnorm V4 on L of example 5

Table 3. The nullnorm V,, on L of example 4
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Example 5. Consider the lattice-ordered index set (A,E) and

the lattice-based sum of bounded lattices L of example 4. With

the same data of example 4, then the functions V! and V{ whose
values are written in Table 5 and Table 6 are, respectively,

nullnorms on L with zero element a which are constructed

using equations (4) and (5), respectively.

Fig 6. The lattice L of example 6

Table 7. The nullnorm V,, on L of example 6

Table 5. The nullnorm VY, on L of example 5
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Table 8. The nullnorm V, on L of example 6
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6. CONCLUDING REMARKS

In this paper, based on the lattice-based sum scheme that has
been recently introduced by El-Zekey et al. (see [9]); new
methods for constructing nullnorms on bounded lattices which
are a lattice-based sum of their summand sublattices are
developed. Subsequently, the obtained results are applied for
building several new nullnorm operations on bounded lattices.
As a by-product, the lattice-based sum constructions of t-norms
and t-conorms obtained by El-Zekey (see [10]) are obtained in
a more general setting where the lattice-ordered index set need
not to be finite and so-called t-subnorms (t-subconorms) can be
used (with a little restriction) instead of t-norms (t-conorms) as
summands. Furthermore, new idempotent nullnorms on
bounded lattices, different from the ones given in [6], have been
also obtained. It is pointed out that, unlike [6], in our
construction of the idempotent nullnorms, the underlying
lattices need not to be distributive. We remark that lattice-based
sum constructions of other aggregation functions on bounded
lattices could also be taken into account (compare also, e.g. [10,
11)).
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